face_recognition은 Python 언어를 사용하여 얼굴 인식 기능을 제공하는 라이브러리이다. 이 라이브러리는 실시간으로 사진 또는 비디오에서 얼굴을 인식하고 추출할 수 있는 기능을 제공한다. face_recognition 라이브러리는 다양한 얼굴 인식 작업을 쉽게 수행한다.
이 라이브러리는 이미지 처리 및 얼굴 특징점 검출을 위해 dlib 라이브러리를 기반으로 하며, 간단한 인터페이스를 통해 사용자가 쉽게 얼굴 인식 기능을 구현한다.
아래는 쉽게 시작할 수 있는 예제 코드 이다.
face_recognition/examples/facerec_from_webcam_faster.py at master · ageitgey/face_recognition
The world's simplest facial recognition api for Python and the command line - ageitgey/face_recognition
github.com
우선 face_recognition 라이브러리를 다운 받는다.
pip install face_recognition
그리고 사용할 샘플 사진이 필요하다.
예제 샘플에서는 obama와 biden을 사용하고 있으니 샘플로 아래 사진을 사용하였다. 사진을 다운받고 사진이름도 각각 obama.jpg biden.jpg로 다꿔준다.
그 다음 아래 코드를 실행한다.
import face_recognition
import cv2
import numpy as np
# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video.
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
# Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Only process every other frame of video to save time
if process_this_frame:
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
만약 오류가 발생한다면 아래 글을 참고하면 된다.
face recognition- TypeError: compute_face_descriptor(): incompatible function arguments. The following argument types are suppor
face_recognition/examples/facerec_from_webcam_faster.py at master · ageitgey/face_recognition The world's simplest facial recognition api for Python and the command line - ageitgey/face_recognition github.com 위 예제를 실행하자 다음과 같은
freeinformation.tistory.com
'IT정보' 카테고리의 다른 글
자신의 GPU에 맞는 CUDA 버전 설치하기 (0) | 2024.03.31 |
---|---|
깃 허브 저장소 그대로 옮기는 방법 - 소유자 변경 (0) | 2024.02.22 |
GitHub 계정 복구하기 (0) | 2024.02.22 |
무료 웹 템플릿 다운로드 사이트 - Bootstrap 사이트 (0) | 2024.01.23 |
직접 NFT 판매하고 수익 내기 (0) | 2024.01.22 |